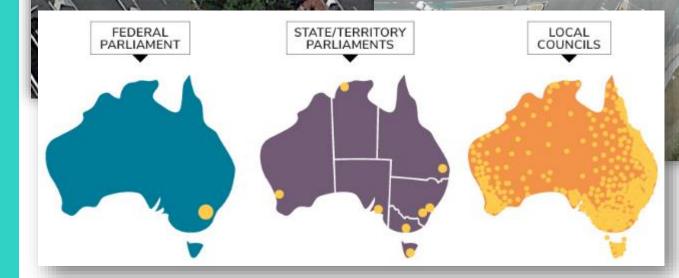
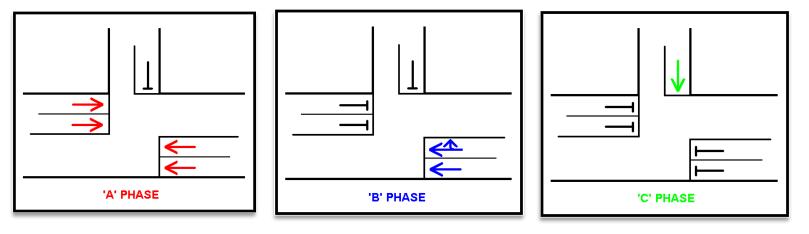
World Conference on Transport Research Society

Second Online Workshop on Arterial Coordination Signal Control 26 Jan 2021


Signal Coordination Control Practices down under (Australia) Daniel Suter, Principal Consultant, Transmax

Context - Australia


Scats Streams arterials

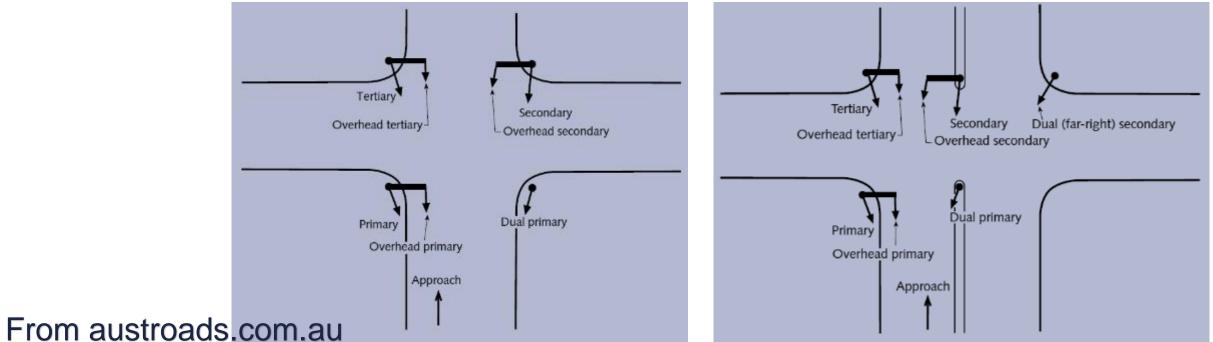
Pop ≈ 25.5M

Context – Naming Conventions

Phase (stage) not movement based*
Personalities – NGEN™
Phase split, cycle time and offset

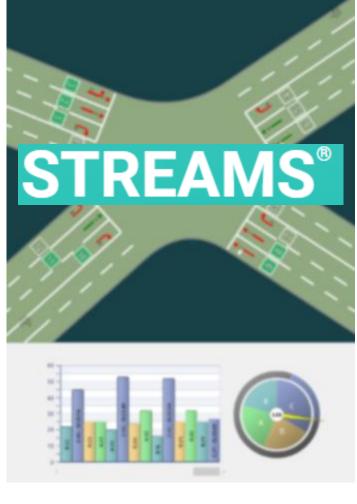
min green	variable green	rest	Early cut off	yellow										
		(variable part)												
Late startmin greenvariable greenrestLaty cut offyellow(variable part)														
wol	k.	cloaranco 1												
Wal	^		clearance 2											
		(can be expired)				<u> </u>								
	green		greengreenrest(variable part)walkclearance 1	greenrestcut offgreen(variable part)(variable part)walkclearance 1	greengreenrestcut offyellow(variable part)walkclearance 1clearance 2	greengreenrestcut offyellow(variable part)walkclearance 1clearance 2								

ITS Network

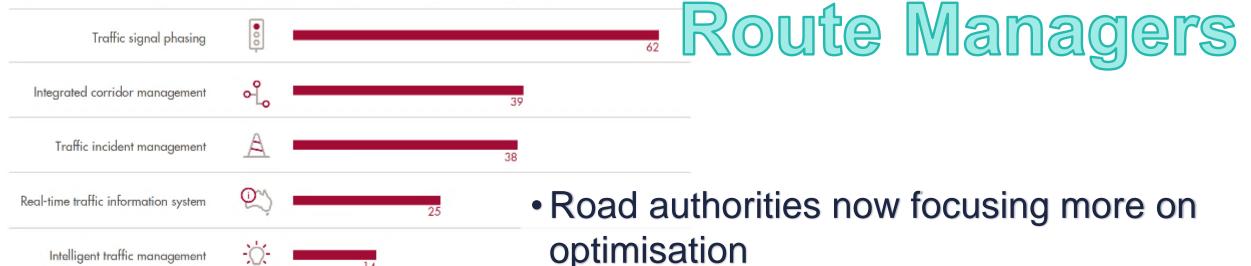

AS2144 **Electrical cable** multicore cable Various IP based with up to 51 cores comm channels (adsl, fibre, radio mesh, **Application Server** 3G, 4G) M5410/CTLR Workstation Detection at each movement

(mainly via loops but also radar, stud, video at specific locations)

Context - Hardware


Safety drives most design & policy decisions (very conservative when it comes to safety)

Coordination – Actuated / Fixed



- User created plans with unused time transfer allowed
- Selection of plans via *Time of Day*, *Dynamic Plan Selection*
- Powerful 'if' statements*
- Scheduler to manage wide range of situations

- Equisaturation on each approach (*Degree Of Saturation*: current flow vs best flow)
- Variable splits, cycle time, semi variable offset (low to high offset)
- Powerful 'if' statements
- Scheduler to manage wide range of situations

Timing Process

Figure 1.2: Possible benefit-cost ratios of ITS projects compared to building new road capacity

- Prioritisation process public concerns
 vs systematic process
- Coordination philosophies range from movement and place to squeaky wheel

Movement and Place

Source: McKinsey Global Institute, 2013 8

Traditional road capacity

Department of Transport and Main Roads

Smarter solutions:

Æ

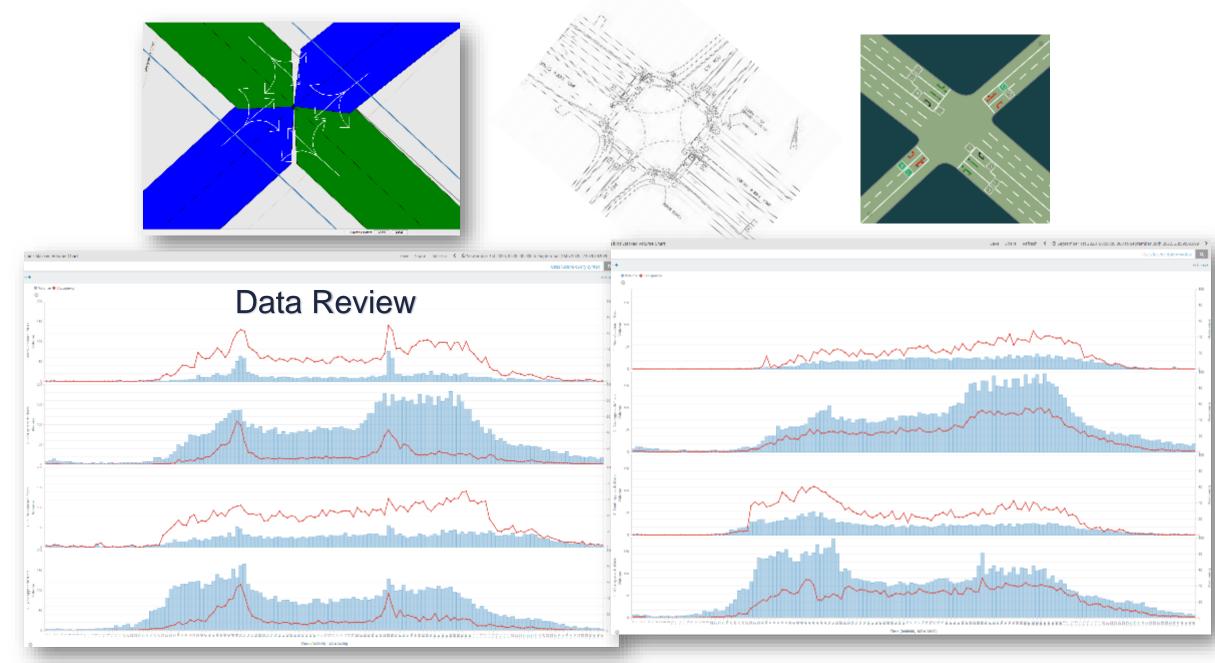
network optimisation framework

June 2019

Timing Process

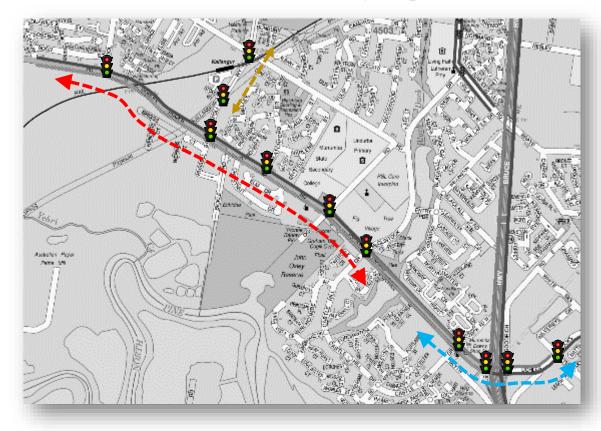
First Principles

- Limited data review greater focus on driving the corridor
- Cycle length derived from Space Time Diagrams and on-site observations
- Splits based upon volumes / capacity (and observations)
- Offsets based upon Space Time Diagram (and observations)
- Plans developed and refined on-site

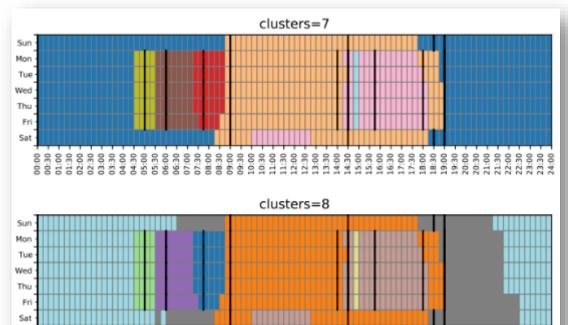

Modelling

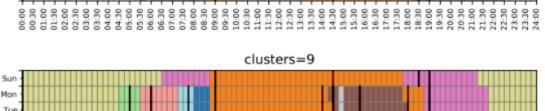
- Configuration & data audit
- Data review as well as driving the corridor
- Modelling packages used to develop calibrated models (Sidra[™] - Transyt[™] -Linsig[™])
- Timing plans created via model output
- Tested / tweaked on street
- Data collection to verify results (automatic / manual)

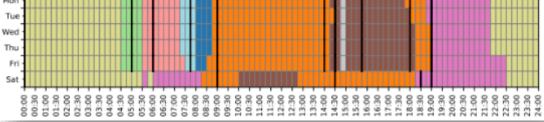
Modelling: data intensive, time consuming + garbage in / garbage out (used for mature networks) – produces best results First Principles: can be very quick but needs experience / expertise (80/20 rule)

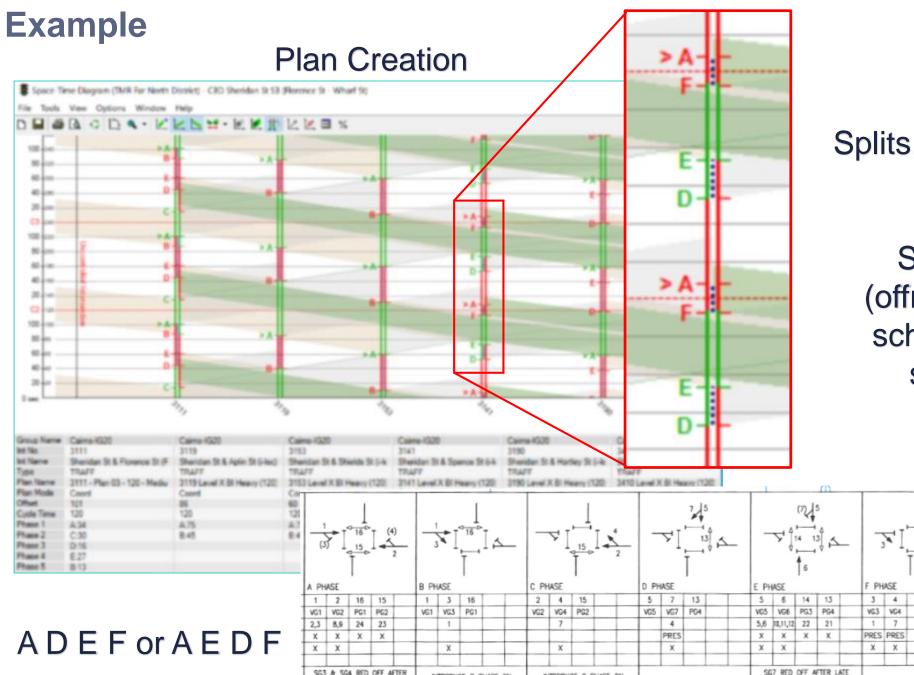

Example

Data Audit



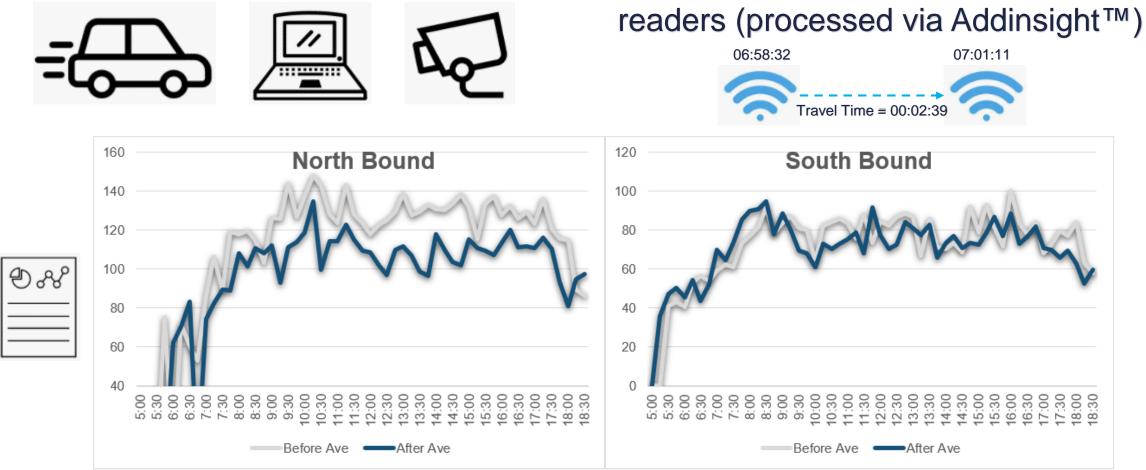

Example


Intersection Groupings



Cluster Analysis for traffic pattern identification

Splits, cycle length, offsets & phase order


Special Features: (offramps, bus priority, school entries / exits, shopping malls)

$\begin{bmatrix} 1 \\ (3) \end{bmatrix} \begin{bmatrix} 0 & 16 \\ 15 \\ 15 \\ 15 \\ 2 \end{bmatrix} \begin{bmatrix} (4) \\ 2 \\ 2 \\ 2 \end{bmatrix}$																					2Ĵ	14	5 3↓ △	_	<u>→</u> I 3 1 1 1																
A	A PHASE				BP	HASE					C PHASE				D PI	D PHASE					E PHASE						F PHASE					F1 PHASE					F2 PHASE				
1		2	16	15		1	3	16				2	4	15		5	7	13			5	6	14	13		3	4				1	3	16			2	4	15			
V	1	VG2	PG1	PG2	2	VG1	VG3	PG	1			VG2	VG4	PG2		VGS	VG7	PG4			VG5	VGE	PG3	PG4		VG3	VG4				VC1	VG3	PG1			VG2	VG4	PG2			
2,	3	8,9	24	23			1						7				4				5,6	10,11,12	22	21		1	7					1					7				
	:	х	х	X													PRES				х	х	х	Х		PRES	PRES														
	1	х					X						Х				X				х	х				X	х					Х					х				
5	LAT	TE STA	4 RED ART PE	ERIOD			NTRODA	UCE B			N	,			PHASE ON EQUEST		1	1				RT PER		FTER L N STRE				F1 P	HASE					PHASES E TO F			PERMI	ITED.			

Example

Test and adjust on site

Measure benefits in Community Costs saved (dollars) i.e. delay = Lost GDP, travel time savings = community savings

Benefits – Travel time via bluetooth

Recommendation: Personality mods, line marking, minor works, parking alterations...

Special Considerations

Vehicle Priority (SCATS™ Priority Engine™ - STREAMS VPP™) Light Rail Absolute Priority Smart Pedestrian Crossings

-38.80124, 144.95719

10.1

-28.034195, 153.431042

Special Considerations

Competing demands on both arterial and motorway networks

Decision Trees used to manage complex, competing priorities

Final Comments

- More focus needed on signal optimisation
- Greater network awareness in our systems
- API needed to control signals

@TRANSMAX

Thank you

Questions

daniel.suter@transmax.com.au +61 488 709 923